

 One Health et sécurité sanitaire : de la plante à l'animal consommateur et consommé

Application aux contaminants chimiques à risque

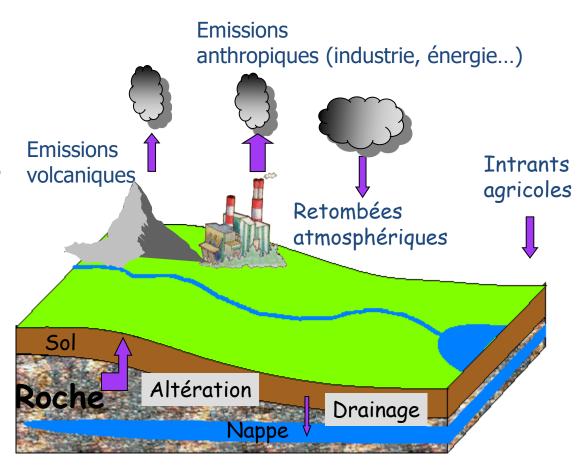
Eric Royer

Ifip-institut du porç

One Health et productions animales

- One Health et santé animale
 - maladies infectieuses émergentes d'origine zoonotique
 - résistance micro-organismes aux antimicrobiens
 - ⇒ collaborations entre les secteurs de la santé humaine, animale et environnementale
 - En Europe, principalement préconisée en relation avec la résistance aux antimicrobiens (AMR).
 - —
 ¬ nombre de réseaux de recherche multidisciplinaires nationaux et internationaux dans le domaine des zoonoses et de One Health.
- One Health et sécurité sanitaire....
 - Qualité microbiologique
 - Gestion du risque contaminants
 - ⇒ éléments traces, mycotoxines et polluants persistants...

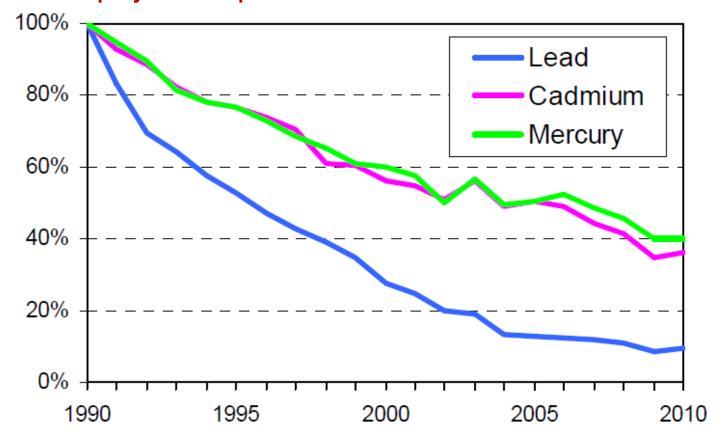
éléments traces des sols agricoles ?



Une origine naturelle + une origine anthropique

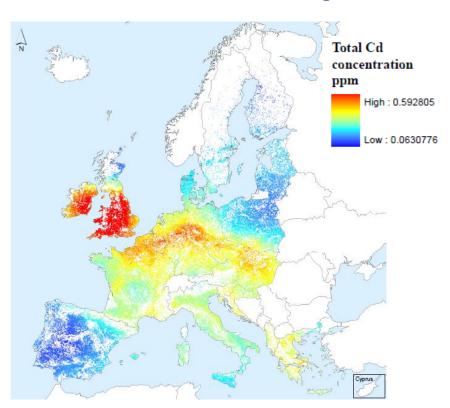
- •Des éléments non essentiels : (AI), (Sb), (Sn), (As), (Cd), (Hg), (Pb)
- •Des éléments essentiels ayant un rôle physiologique : (Cu), (Zn), (Se),
- Concentrations < 100 mg/kg
- Présents dans la croûte terrestre,
- Utilisation dans de nombreuses activités humaines

Problèmes:

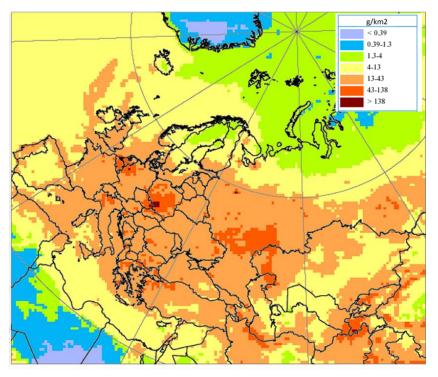

- Non biodégradables
- Faculté de bioaccumulation
- Actions biologiques

Evolution de la pollution de 1990 à 2010

 Réduction des émissions anthropiques d'éléments traces dans les pays européens



EMEP data, www.msceast.org, 2012

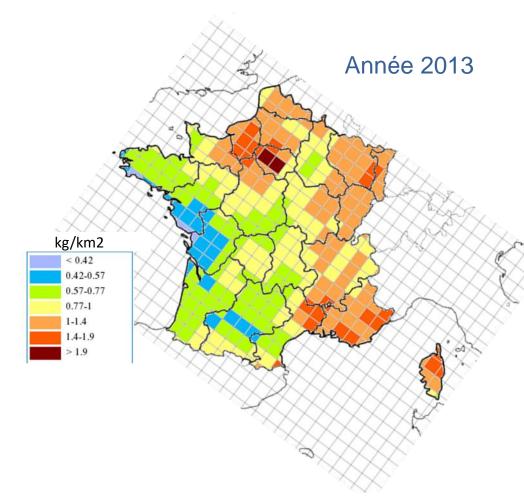

Le cadmium dans les sols agricoles de l'UE institut du porc

Concentration des sols agricoles

Dépôt atmosphérique en 2013

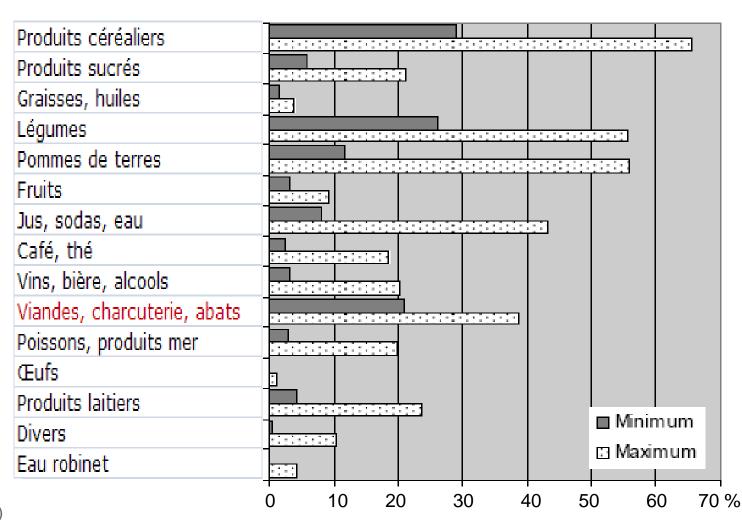
Report 'Sustainable Agriculture and Soil Conservation' eusoils.jrc.ec.europa.eu

EMEP data www.msceast.org


Les éléments métalliques dans les sols français

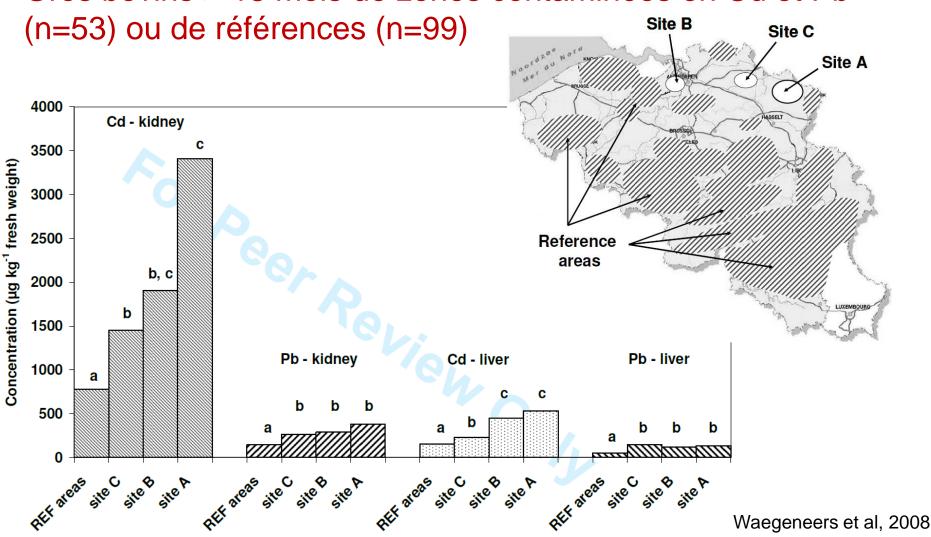
Teneur des sols en Cadmium

absence donnée 1er quartile 2^{ème} quartile 3^{ème} quartile données RMQS 4^{ème} quartile outil INDIQUASOL _GISSOL / INRA


Dépôt atmosphérique en Plomb

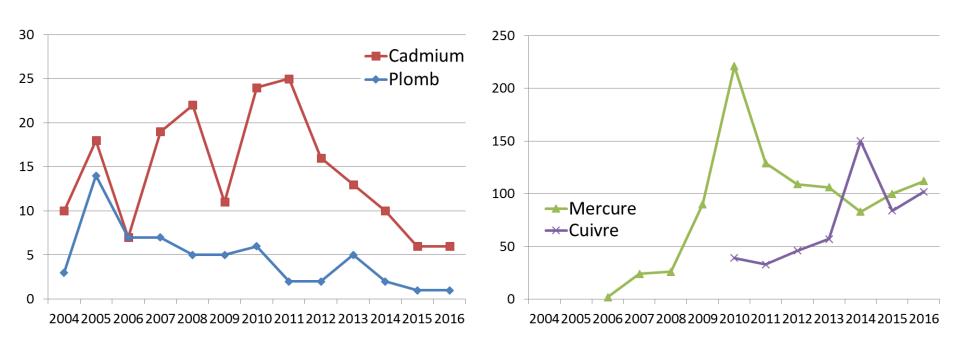
Calcul de l'exposition au cadmium

%
apport
par
aliment



EFSA 2009 (Opinion scientifique Cd)

Rôle de la localisation géographique : cas du bétail dans la Campine (B)


Gros bovins > 18 mois de zones contaminées en Cd et Pb

Evolution de la présence en métaux dans les viandes de porcs: Bilans UE

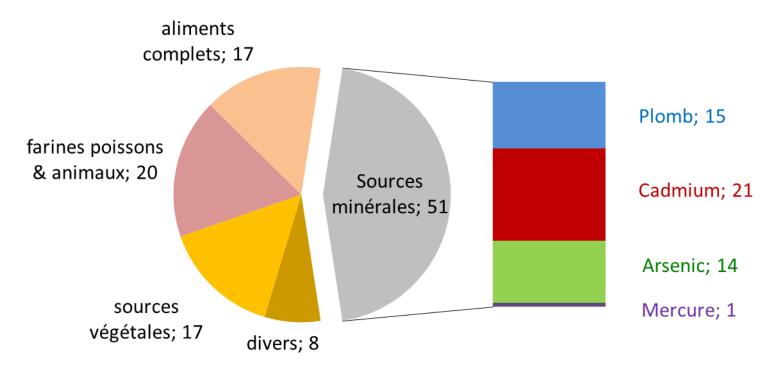
 Evolution du nombre annuel d'échantillons ciblés non conformes pour l'espèce porcine

Efsa, synthèses annuelles des résultats des plans de contrôle nationaux

Evolution de la présence en métaux dans les viandes : Bilans France

■ Evolution du nombre annuel d'échantillons ciblés non conformes pour la boucherie (bovins, ovins, caprins, porcins, équins) dont la viande de porc

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Total ETM boucherie	1211	1222	1361	1274	1471	1425	1414	1266	1243	1602	1519
NC	21	3	6	4	4	0	0	2	2	143	31
%	1.7%	0.2%	0.4%	0.3%	0.3%	0.0%	0.0%	0.2%	0.2%	8.9%	2.0%
dont											
Pb porc	1*		1/430	1/430	0/148	0/428	0/440	0/398	0/394	0/567	0/586
Cd Porc	3		0/428	0/430	1/148	0/428	0/441	0/398	0/394	0/567	0/586


*2014-2015 : échantillonnage de foies d'équin/bovin

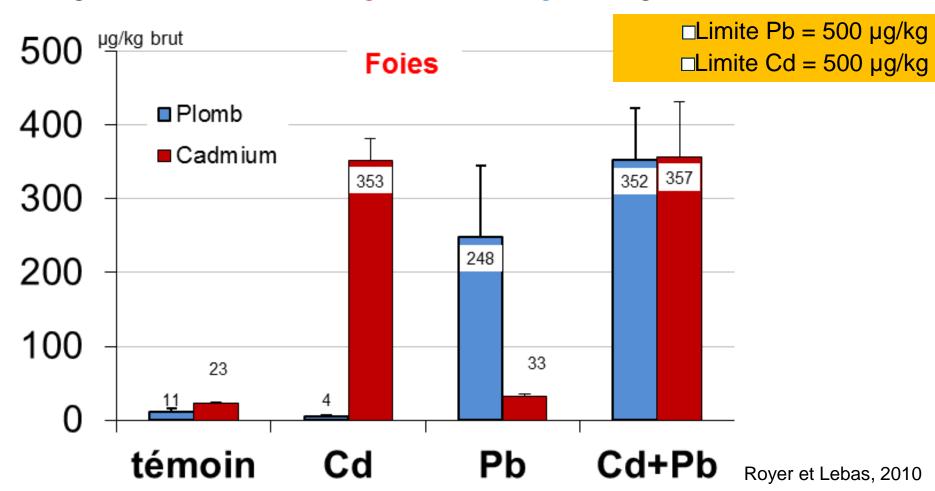
DGAL, bilans annuels PSPC

<u>Sécurité des ingrédients</u>: origine des contaminations en métaux des aliments du bétail

■ 113 notifications au système d'alerte rapide de l'UE (RASFF – 2000-2016)

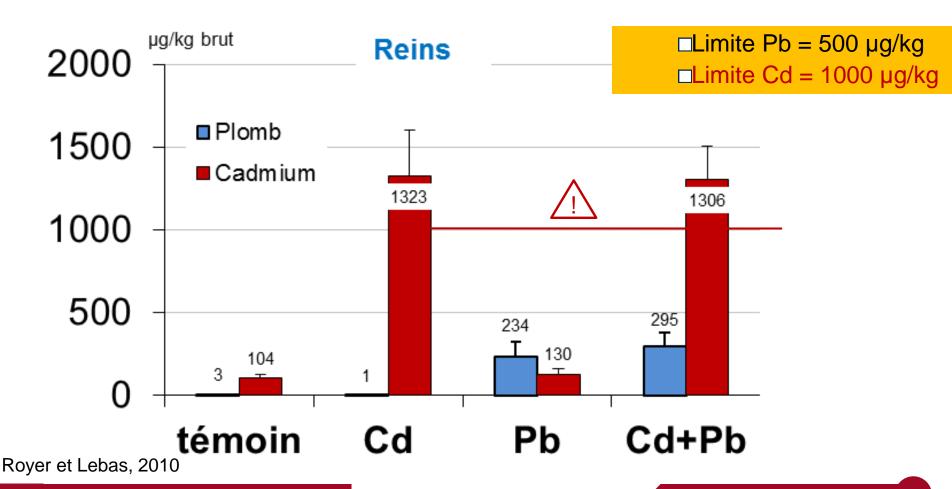
<u>Sécurité des ingrédients</u>: résultats plans autocontrôles alimentation animale en France

Analyses As, Pb, Cd, Hg


Oqualim, 2013, 2014

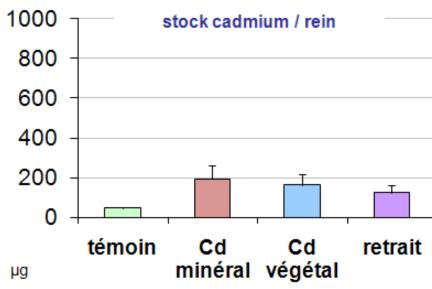
		2012 MP minér MP végét		2013 116 MP minérales 145 MP végétales			
	< 2/3 TMA	> 2/3 TMA	> TMA	< 2/3 TMA	> 2/3 TMA	> TMA	
Argiles		1	0	9	2	0	
Carbonates		1	0	12	0	0	
Magnésie			0	9	0	0	
Phosphates		4	0	17	4	0	
Sel			0	7	0	0	
Autres minéraux			0	56	0	0	
Pulpes betterave			0	23	1	0	
T tournesol import			0	21	2	0	
T tournesol metro	10	7	0	19	5	0	
Autres végétaux			0	74	0	0	

Etudes Ifip faibles expositions


Essai 1: porcs témoins ou exposés 118 j aux limites réglementaires : 0.5 mg Cd +/- 5 mg Pb /kg aliment

Etudes Ifip faibles expositions


<u>Essai 1</u>: porcs témoins ou exposés 118 j aux limites réglementaires : 0.5 mg Cd +/- 5 mg Pb /kg aliment



Etudes Ifip faibles expositions

<u>Essai 2</u>: porcs témoins ou exposés 120 j aux limites réglementaires : 0.5 mg Cd minéral ou végétal /kg aliment

□Limite Cd = $1000 \mu g/kg$

Royer et Lebas, 2010

Essais 1 et 2 : Résultats analyses viandes

Muscle du jambon

- Teneurs maximales réglementaires
 - Pb = 100 μg/kg de produit frais
 - Cd = 50 µg/kg de produit frais
- Essai 1 : 4 x 4 échantillons
 - Pb \rightarrow tous < 1 µg/kg = LQ
 - Cd \rightarrow tous < 5 µg/kg = LQ
 - As \rightarrow tous < 7 µg/kg = LQ
- Essai 2: 4 x 4 échantillons
 - Pb \rightarrow moyenne 3.4 µg/kg (max = 12)
 - \blacksquare Cd \rightarrow tous < 1 μ g/kg = LQ

<u>Référence</u>: Les teneurs mesurées toutes viandes de boucherie en France sont de 1.0 μ g Cd, 4 μ g Pb et 9 μ g As par kg produit frais (Leblanc et al, 2004).

Implications: exposition animale

- porcs exposés sur totalité période d'élevage = f(aliments)
 - teneurs faibles muscle
 - pas de dépassement pour Pb et foie (Cd)
 - léger dépassement pour Cd dans rein
- gestion des limites réglementaires
 - ...respect des seuils réglementaires dans les aliments n'implique pas (toujours) la conformité des produits animaux....
 - Approches ALARA vs. Tolerable Weekly Intake
 - Alimentation animale (Directive 2002/32 Parlement et Conseil)
 - Organes comestibles (Règlement N° 1881/2006 Commission)
 - Modélisation rétention Cd mouton, oeufs, lait..[Prankel et al, 2005, van Eijkeren et al, 2006; van Raamsdonk et al, 2009]

Exposition humaine: nécessité de réduction de l'exposition au Cd!

- Tolerable Weekly Intake
 - Joint FAO/WHO Expert Committee on Food Additives (JECFA):
 - -1988: 7 µg/kg body weight
 - -2010: 5.8 µg/kg body weight
 - EFSA Panel on Contaminants in the Food Chain:
 - -2009-2011: 2.5 µg/kg body weight
 - "ensure a high level of protection of all consumers, including exposed and vulnerable subgroups of the population"
- Average Cd dietary exposure for the European population:
 - EFSA Scientific report
 - -2012: 2.04 µg/kg body weight per week.

<u>Sécurité des ingrédients</u>: Comment limiter la contamination des cultures ?

Denaix et al, 2010

Minimiser les apports

Surveiller la qualité des produits apportés aux cultures

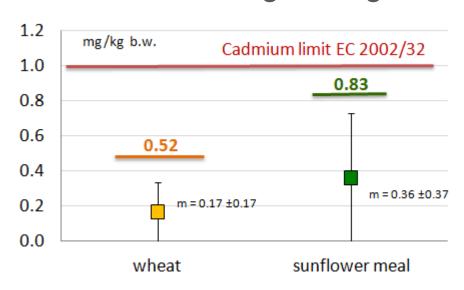
Réduire la disponibilité chimique des éléments traces pour la plante

Augmenter le pH

Apporter de la matière organique

Surveiller la qualité de l'eau d'irrigation

Choisir le végétal adapté



Adapter les cultures (espèces, variétés) aux sols

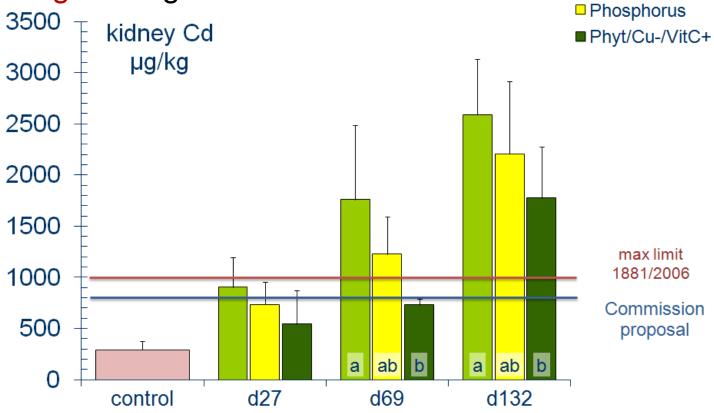
Effet de formulations d'aliment adaptées sur la concentration en cadmium des reins de porcs

- Essai 3: Aliments témoin ou contaminés pendant 27, 69
 ou 132 j. (± 0.5 mg Cd/kg = limite maximale des aliments)
 - PHYT : avec phytase (1000 FTU),
 - PHOS : sans phytase (+ 0.6 g P),
 - CuVitC: avec phytase, vitamine C (1000 puis 700 mg/kg) et faible en Cu (44 mg/kg en 2^{ème} âge).
- Contamination d'origine végétale

Limites matières premières pour alimentation animale

Ingrédients utilisés

moyenne [Cd] \pm ET , EFSA 2004

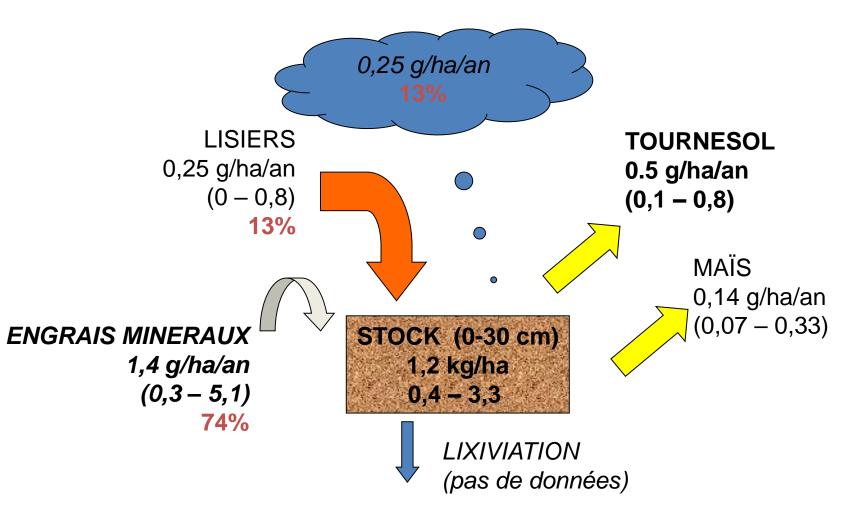

Royer et Lebas, 2013

Effet de formulations d'aliment adaptées sur la concentration en cadmium des reins de porcs

Phytase

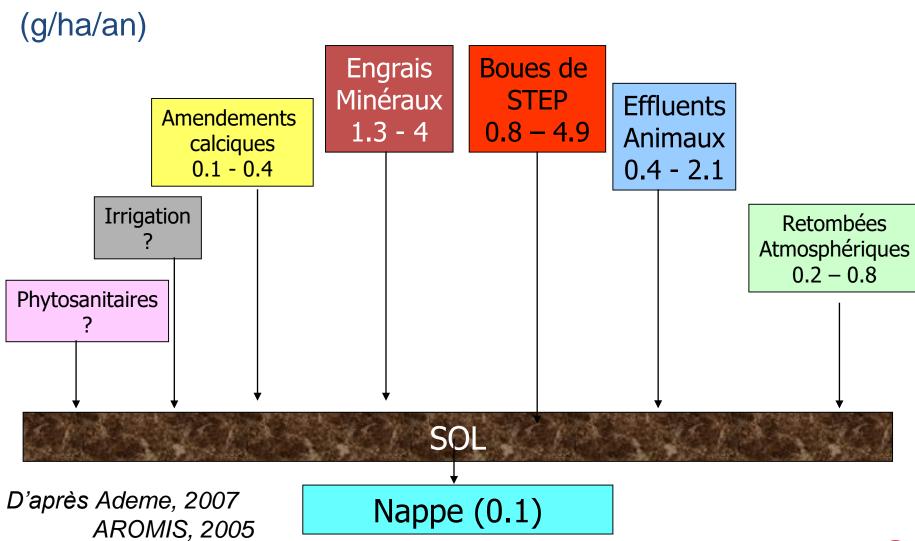
Essai 3: porcs témoins ou exposés 27, 69 ou 132 j à 0.5 mg Cd / kg aliment

Royer et Lebas, 2013

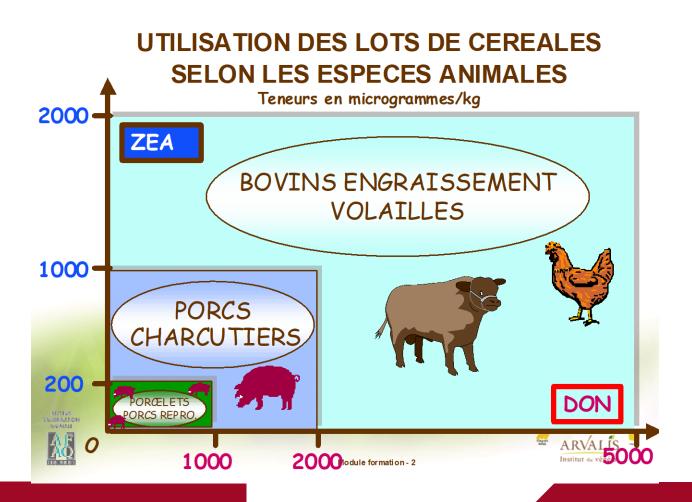

Aliment : P < 0,001

Durée exposition: P < 0,001

Flux annuels de cadmium à la parcelle


Denaix et al, 2010

Flux moyen de cadmium sur les parcelles agricoles

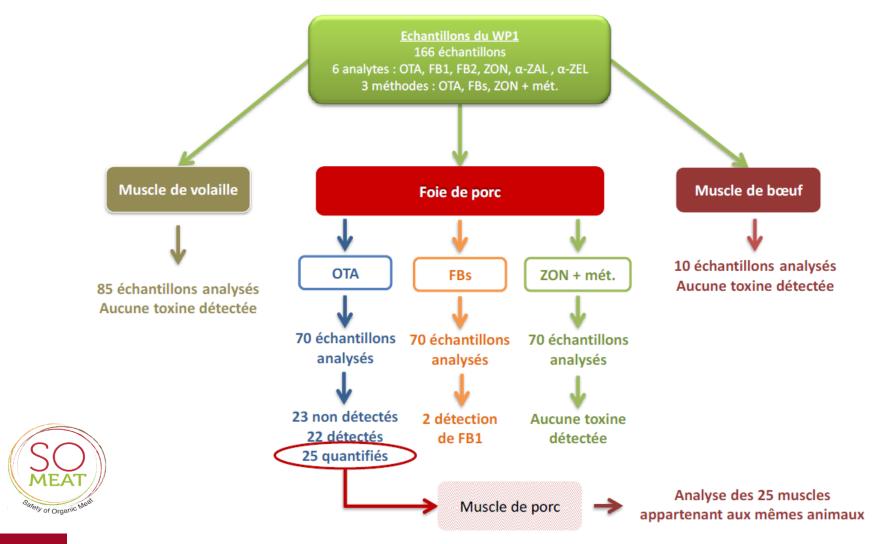

Denaix et al, 2010

Les mycotoxines

 Différence de sensibilité des espèces aux mycotoxines

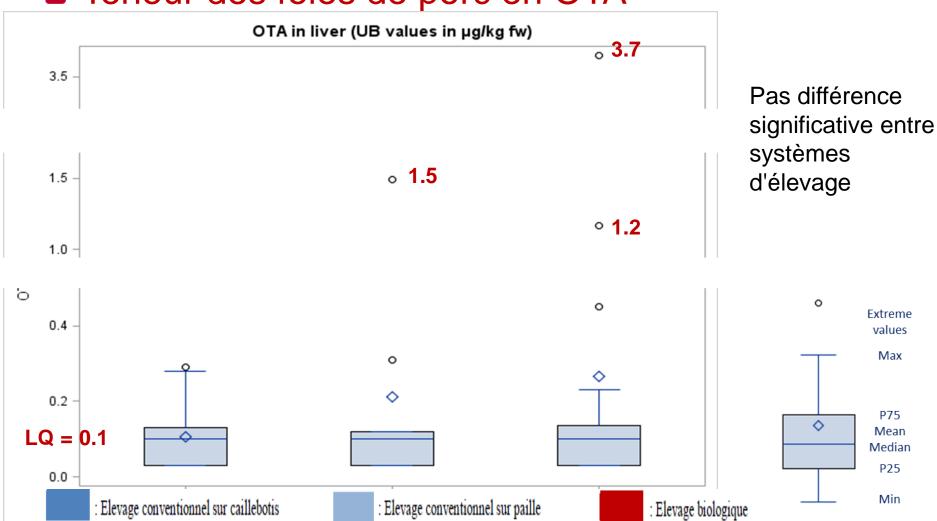
Teneurs maximales pour les mycotoxines en alimentation animale

en mg/tonne sauf mention	Matières premières ¹		Aliment				
Valeurs maximales réglementées ²							
Aflatoxine B1	céréales 20		ruminant adulte non laitier, volaille, porc	20			
			autres animaux	10			
			bétail laitier, jeune ruminant et volaille, porcelet	5			
Ergot du seigle, mg/kg	céréales	1 000	tous animaux	1 000			
Valeurs maximales recommandé	es ³ ou indicatives ⁴						
DON ³	céréales	8 000	tous animaux sauf :	5 000			
	coproduits du maïs	12 000	jeune ruminant	2 000			
			porc	900			
Fumonisines B1 + B2 ³		60 000	ruminant adulte	50 000			
	maïs et coproduits du		volaille et jeune ruminants	20 000			
	maïs		poisson	10 000			
			porc, cheval, lapin	5 000			
Zéaralènone ³	céréales	2 000	ruminant	500			
	coproduits du maïs	3 000	truie et porc charcutier	250			
			porcelet et cochette	100			
Ochratoxine A ³	céréales	250	volaille	100			
			porc	50			
T2 + HT2 ⁴	Coproduits d'avoine	2000	Tous animaux	250			
	autres céréales	500					


¹céréales: toutes céréales, coproduits, pailles. ² Directive 2002/32. ³ Recommandation UE du 17/08/2006.⁴ Recommandation UE du 27/03/2013

Teneurs maximales plus basses pour le porc, espèce la plus sensible.

Etude SoMeat

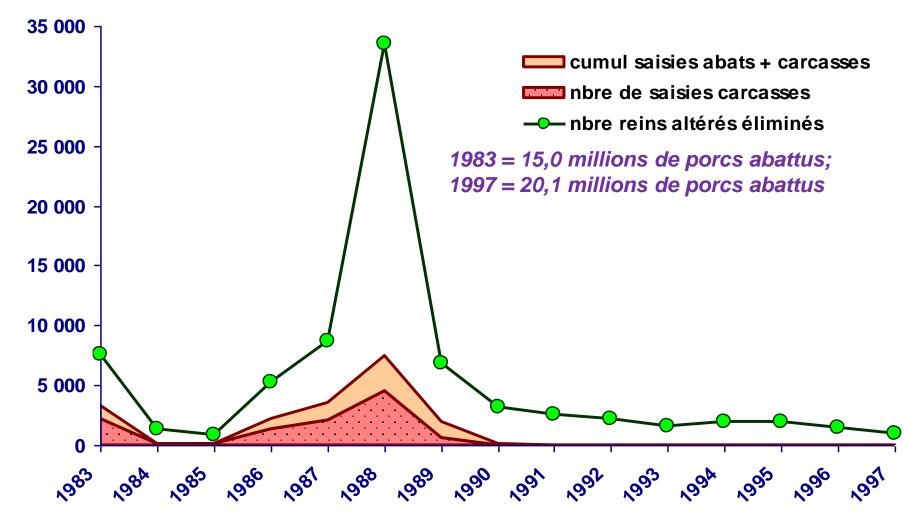

Ochratoxine A dans les viandes bio et conventionnelles

Résultats porcs

Teneur des foies de porc en OTA

Discussion

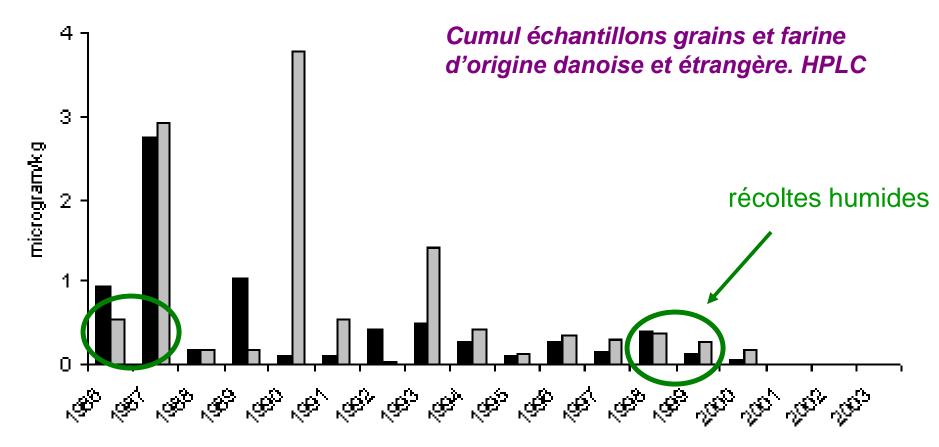
Exposition animale faible à l'OTA


- 2 % aliments animaux d'engraissement > 1,5 μg/kg [Kovalsky et al, 2016]
- Récolte 2013 (> 2011/2012)
 - 2% céréales F & B > 2 µg/kg [BFA, 2013]
 - 5 % blés F > 1 μ g/kg [Neovia, 2013]

Système élevage et OTA

- Label rouge
 - OTA non détectée dans paille [Mol et al, 2014]
- Bio
 - Pas de différence pour produits animaux [Jørgensen et al., 1999 ; Schiavone et al., 2008; Malmauret et al., 2010]
 - Moindre capacité séchage céréales bio au Danemark années 90's [Jørgensen and Jacobsen, 2002; Fromberg et al., 2005]

Évolution du nombre de reins éliminés et de saisies des abats ou des carcasses de porcs au Danemark



Ifip, d'après Direction de l'alimentation du Ministère danois de l'Agriculture, 2000

Teneur moyenne en ochratoxine A du blé conventionnel ou de culture biologique (1986-2000, Danemark)

■ Conventionally grown wheat ■ Organically grown wheat

Danish Veterinary and Food Administration, 2005

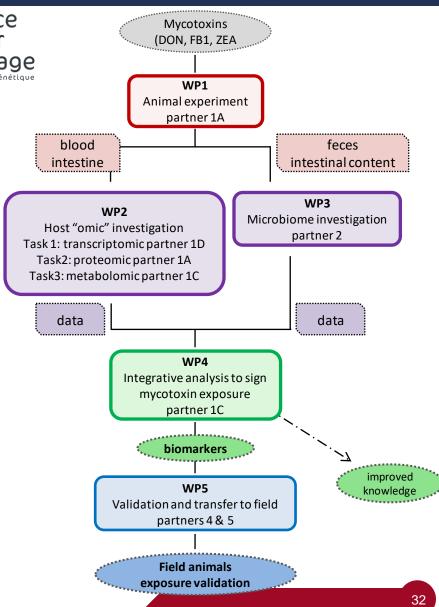
Discussion

- Effet tissus : rein ?
- Teneur OTA foie
 - faible consommation abats = 3 g/j et 47 g/ (P97,5) [Volatier 2000]
 - estimation exposition population adulte

ng/kg pc/jour		moy UB	P95 UB
EAT2	Abats	0.004	0.102
SoMeat	Si Σabats = Foie porc	0.009	0.141

- Faible contribution produits d'origine animale
 - < 3 % & < 10 % (forts consommateurs) [EFSA, 2004]</p>
 - contribution UB abats = 0,2 %, charcuteries 5% [EAT2, 2011]

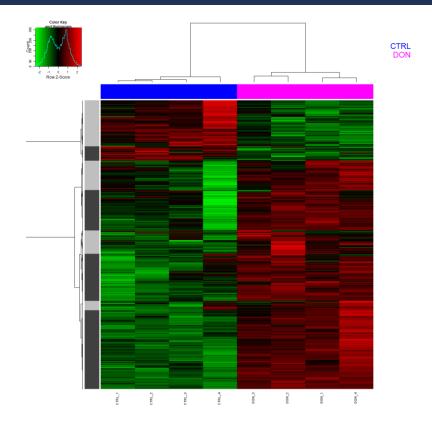
Bio-marqueurs d'exposition aux mycotoxines


Projet ExpoMycoPig

France Futur Élevage

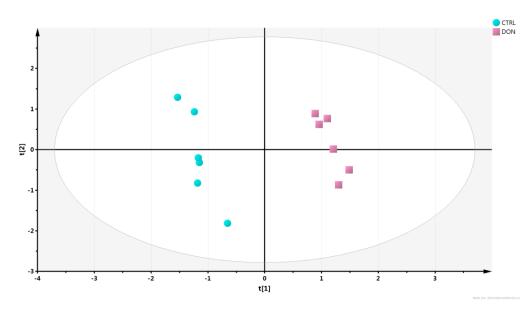
- Modèle porc
 - porc espèce cible
 - nombreuses similitudes biologiques (tractus intestinal et système immunitaire).

Objectifs


- Signature spécifique d'exposition / plasma, fèces.
- Santé humaine → biomarqueurs identifiés
- Valeurs maximales DON, FB et ZEA maïs et produits de maïs dépassées dans au moins un groupe d'âge (EFSA, 2014).

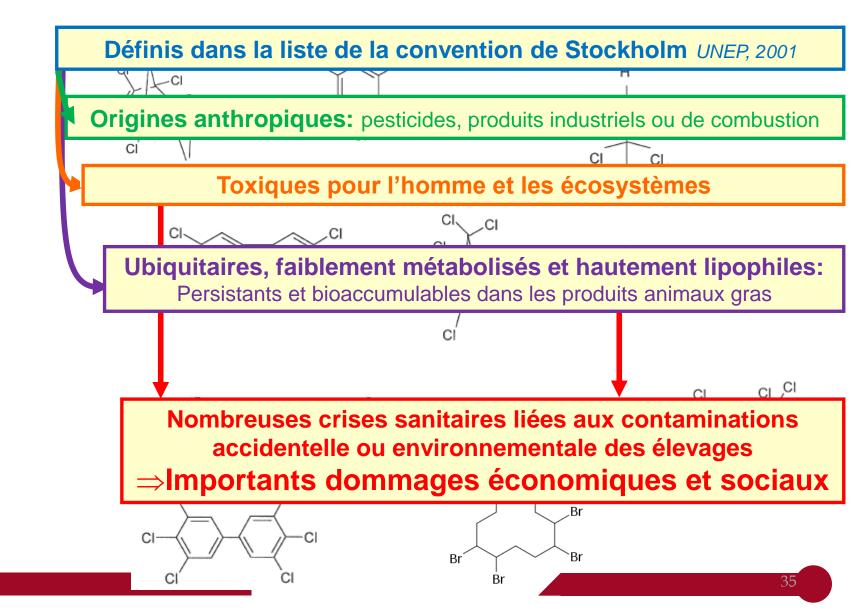
Signature ADN de porcs exposés aux mycotoxines

- INRA Toxalim + platforme GeT-TRIX
 - Effets du DON sur la synthèse ADN de la muqueuse intestinale du porc.
 - 323 gènes exprimés différemment entre muqueuses témoins et DON.
 - DON perturbe voies liées à l'immunité et à l'inflammation, à la régulation du cycle cellulaire, à l'apoptose et à la réponse au stress du réticulum endoplasmique


 Carte ADN de tissus d'animaux témoins (bleu) ou exposés au DON (rose)

Pierron et al, 2016

Signature métabolomique de porcs exposés aux mycotoxines


- Two-dimensional PLS-DA scores plot integrated 1H-NMR spectra of duodenum samples (A=2, R²=0.878, Q²=0.548)
- 1 point = 1 animal témoin (bleu) ou DON (rose)

- INRA Toxalim + plateforme AXIOM platform, analyse du métabolome intestinal porcs recevant 3 mg de DON/kg aliment pendant 4 semaines.
- 20 metabolites discriminant between control and exposed animal.

Les Polluants Organiques Persistants (POP) dans les produits animaux

Avis de l'EFSA sur le niveau de préoccupation pour les contaminants chez

le porc, les bovins et ovins, les volailles

Rang	Catégorie	Contaminants				
1	négligeable	colorants				
2	faible	organochlorés, organophosphorés, composés perfluorés, phytotoxiques, impuretés (P, B, OC) Cd, Pb, Hg mycotoxines (AFB1,)				
3	moyen	PCB-NDL, PBDEs (P, V), HBCDDs Cd, Pb, Hg (P, B, OC) ochratoxine A				
4	très préoccupant	dioxines et PCBs-DL				

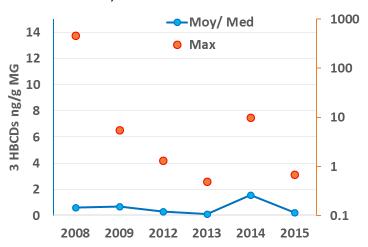
[•] EFSA (Scientific opinion on the public health hazards) pour le porc (2011), les produits avicoles (2012), les bovins (2013), les ovins et caprins (2013)

Exposition des animaux en cours d'élevage

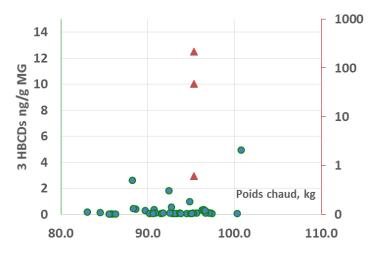
Ingestion :

- Aliment
 - Accidents : ex PCBs, PCDD/Fs
- Bâtiment/matériaux d'élevage
 - Retardateurs de flamme (bromés) : PBDE, HBCD
 - Traitements insecticides : toxaphène
- Environnement (accès à un parcours)
 - Accumulation dans l'environnement
 - Transport sur de longues distances

 \Rightarrow Tous


Origine d'un contaminant émergent : **HBCD**

(projet Braviporc, 2013-16)


Echantillons porc DGAL

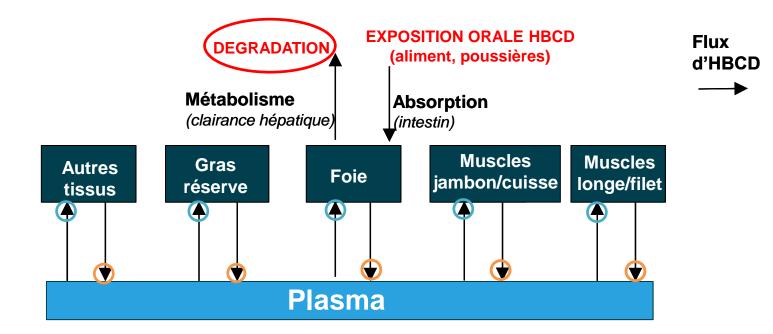
■ PSPC, 2009 à 2015

Enquête Ifip

42 élevages, 2014

Matériaux d'isolation en élevage Laberca

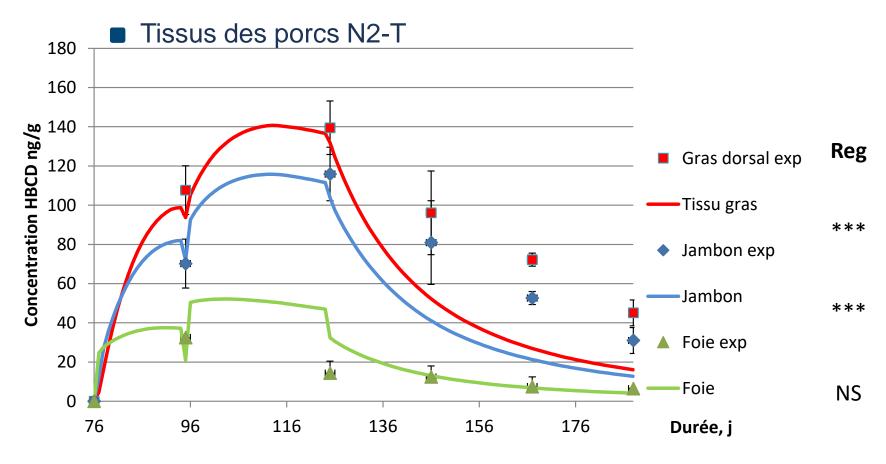
- Fluorescence R-X pour Br → isolants
- LC-MS/MS: 7 / 34 matériaux = HBCD



Sample	%HBCD	Profile (%)			
Sample	(LC-MS/MS)	α	β	γ	
Technique ((Sigma)	2	5	93	
EPS	0.6	19	11	70	
XPS A	2.2	77	14	9	
XPS B	2.6	75	15	10	
XPS C	3.8	60	15	25	
XPS D	1.7	73	15	12	
XPS E	3.6	80	12	8	
XPS F	3.9	78	14	8	

Modélisation générique d'un contaminant ifiliemergent : porc et poulet de chair

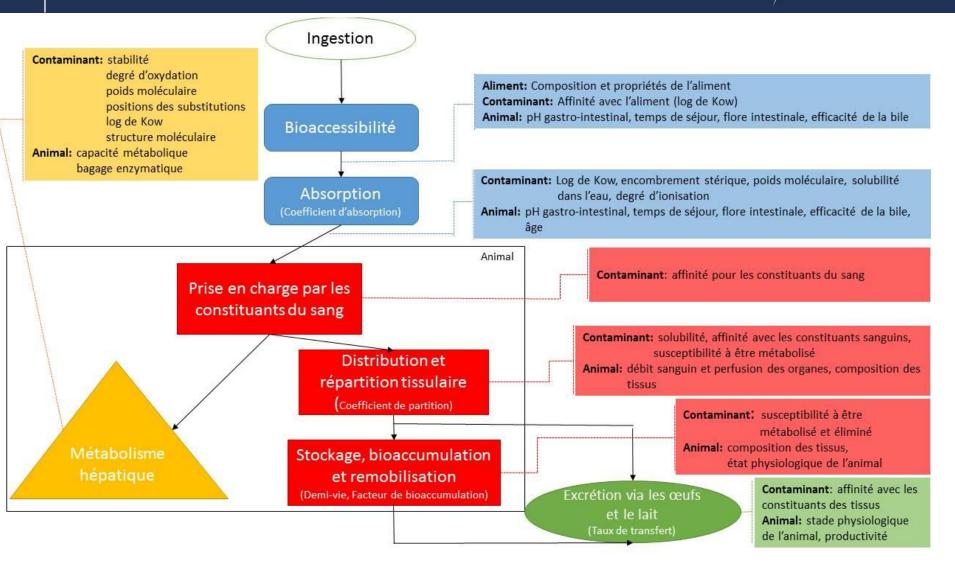
Flux + élimination de la molécule HBCD



- Flux HBCD → compartiment : f([HBCD]_{sang}, débit artériel compartiment)
- Flux HBCD → sang: f(débit veineux compartiment, coefficient de partition) coefficient de partition: [lipides neutres]_{compartiment}/[lipides neutres]_{sang}

Validation du modèle chez le porc

Avec les données des groupes expérimentaux



Contamination: ≈ 32 μg/kg aliment pendant 7 semaines Décontamination: 9 semaines

Royer et al, 2017

Facteurs intervenant dans le transfert des contaminants chimiques chez l'animal

Morgane Guillard (stage 2014)

Conclusions

One Health

- approche unique recherche et éducation peu appliquée
- activités principalement lancées par le maillon 'élevage'
- Enjeux de sécurité alimentaire
 - Risque maîtrisé en France & Europe
 - gestion des limites
 - Rôles de l'environnement et de l'alimentation animale
 - risque surtout lié aux contaminations ponctuelles
 - information des filières
 - Produits porcins : faible prévalence
 - veille sur abats // plans surveillance → informations des filières....
- Nouvelles études
 - Modélisation et biomarqueurs
 - futurs outils pour la filière

Remerciements

Partenaires

- Brice Minvielle (Idele), Angélique Travel (Itavi), Sylvie Dauguet (Terres Inovia), Emilie Donnat (Acta).
- Laurence Denaix, Catherine Jondreville, Bertrand Meda, Elizabeth Baeza, Erwan Engel, Philippe Pinton (INRA)
- Ronan Cariou, Gaud Dervilly Pinel (ONIRIS)
- Thierry Guérin, Adeline Huneau (Anses)
- Etude Suivi des éléments traces
- **Etude SoMeat**

- Robert Granier, Nathalie Lebas, Laurent Alibert
- Equipes station de Villefranche-de-Rouergue

Financements

- Programmes CASDAR du Ministère de l'Agriculture
- Agence Nationale de la Recherche
- Programme national de développement agricole et rural (PNDAR)

Merci de votre attention

www.ifip.asso.fr

Séminaire du 3 octobre 2018
La santé végétale dans le concept One Health :
quelle contribution ?

