

Xylella fastidiosa Projet européen H2020 POnTE Avancées et perspectives des travaux au LSV

16 septembre 2016

Françoise Poliakoff - Anses - Laboratoire de la santé des végétaux

Unité bactériologie, virologie, OGM - Angers

Séminaire : Xylella fastidiosa un an après ?
Connaissances acquises et perspectives de recherche et développement

Projet européen POnTE

'Organismes nuisibles menaçant l'Europe'

Donato Boscia

Horizon 2020

SFS-03a-2014: organismes natifs ou étrangers nuisibles pour l'agriculture ou la forêt

Durée: 4 ans (Nov. 2015-Nov. 2019)

Consortium du Projet

TOZER SEEDS

25 PARTICIPANTS 13 PAYS
120 CHERCHEURS

Budget du Projet

Pays de l'UE	BUDGET ET BENEFICIARES
ITALIE	1.760.200,00 CNR-IPSP, UNIBA-DISSPA , AGRITEST, ACLI RACALE
FRANCE	604.500,00 INRA, ANSES, VILMORIN
ESPAGNE	1.356.300,00 CSIC-ICA, CSIC-IAS, IVIA-AC, IVIA-PPBC, CITOLIVA, AGR VILLENA
BELGIQUE	199.500,00 AUREA IMAGING
PAYS-BAS	474.300,00 WU, CERTIS EUR
AUTRICHE	180.650,00 BFW
ROYAUME UNI	620.750,00 SG-SASA, FORESTRY RES AG, A L TOZER
ALLEMAGNE	293.300,00 LOEWE, PRC
FINLANDE	346.000,00 LUKE

Coordinateur du Consortium

Italian National Research Council Institute for Sustainable Plant Protection CNR-IPSP, Bari (Italy)

PAYS hors-UE	BUDGET AND BENEFICIARES
NORVEGE	300.000,00 NIBIO
COSTA RICA	117.500,00 UCR
ISRAËL	200.000,00 ARO VOLCANI
SERBIE	451.000,00 UB-FA

□ Xylella fastidiosa (Xf) et ses vecteurs hémiptères

□ 'Candidatus Liberibacter solanacearum' et ses vecteurs psylles

 Hymenoscyphus fraxineus (anamorph. Chalara fraxinea) et les nouvelles espèces exotiques de Phytophthora

Objectifs

Pour chaque cible, les activités de recherche implémenteront l'état de l'art et fourniront de nouvelles bases scientifiques pour porter les mesures de gestion durable de ces maladies.

Les objectifs spécifiques des différents pathosystèmes reposent sur une approche de recherche multidisciplinaire ayant pour cible les besoins pratiques des parties prenantes et utilisateurs finaux.

Principaux livrables

- Identification de biomolécules pouvant être brevetées, produites, formulées et utilisées pour prévenir ou réduire la colonisation de l'hôte
- Identification de produits chimiques préventifs pour lutter contre l'acquisition de Xf par les insectes vecteurs, tels que le Cercope des prés et autres cicadelles
- Sélection de variétés cultivées tolérantes ou résistantes
- Identification de bactéries endophytes pouvant protéger de Xf
- Développement de méthodes de détection précoce des agents pathogènes pouvant être utilisées pour les contrôles à l'importation dans les ports afin de se prémunir contre l'introduction des agents pathogènes et organismes nuisibles exotiques
- □ Identification d'un agent de contrôle biologique des insectes vecteurs de Xf
- Développement de méthodes de gestion permettant d'atténuer l'impact et de limiter la dispersion des maladies émergentes et organismes nuisibles étrangers

POnTE sur la toile

www.ponteproject.eu

info@ponteproject.eu

www.facebook.com/ponteprojecteu

@ponteprojecteu

Ube Ponte Project

Ponte Project EU

www.ponteproject.eu

LATEST NEWS

Live streaming of International Workshop on Xylella fastidiosa

18/04/2016 / in PONTE NEWS /

Will be held in Valenzano (Bari, Italy), from 19th to 22th April 2016, an International Workshop on

EVENTS

Rome kick-off meeting

COMMUNICATION

GALLERY

EVÈNEMENTS PONTE

Horizon 2020 European Union funding for Research & Innovatio

Réunion de lancement à Rome (Italie) 27 Novembre, 2015

Décembre 2015, Izmir (Turquie)
Projet POnTE présenté par
Maria Saponari, CNR-IPSP (Italie)

Avril 2016, CIHEAM-IAMB, Bari (Italie)

FAO-IPPC-CIHEAM workshop sur "Xylella fastidiosa et le syndrome du déclin rapide de l'olivier (OQDS)". Projet POnTE présenté par Donato Boscia, CNR-IPSP (Bari)

Conférence concernant *Xylella fastidiosa* organisée par l'Anses Le 10 mars 2016 à Paris.

Home

"Xylella fastidiosa one year ... ×

Research

Events

Newsletter Subscription

Communication

Send Contribution

Contacts

"Xylella fastidiosa one year after ?", a conference in **Paris**

13/09/2016 / in CONFERENCES /

September 2016, RMT VegDiag (Réseau 16. technologique "Diagnostic en santé végétale"), a French technological network associating all stakeholders interested in diagnostics in plant health, will organize a conference entitled: "Xylella fastidiosa one year after? Knowledge's and perspectives of research and development".

Several members of POnTE will participate. Dr. Marie-Agnès Jacques (INRA) and Dr. Françoise Poliakoff (Anses) will talk about "Diversity of strains of Xylella fastidiosa in France: how many introductions and which risk for agriculture?" and "EU POnTE Project: general main objectives, and tasks implemented by Anses", respectively. Prof. Domenico Bosco (UNITO-DISAFA) will give information on the epidemic situation in Italy and the role of vectors and Dr. Philippe Popular Recent Comments NATURE.COM | Gridlock over Italy's olive tree deaths NATURE.COM | Gridlock over Italy's olive tree deaths starts to ease 20/05/2016 - 09:05

Xylella fastidiosa chosen as a case study for the IPPC implementation...

11/06/2016 - 07:00

POnTE Project presented at the II TRAFOON Training Workshop...

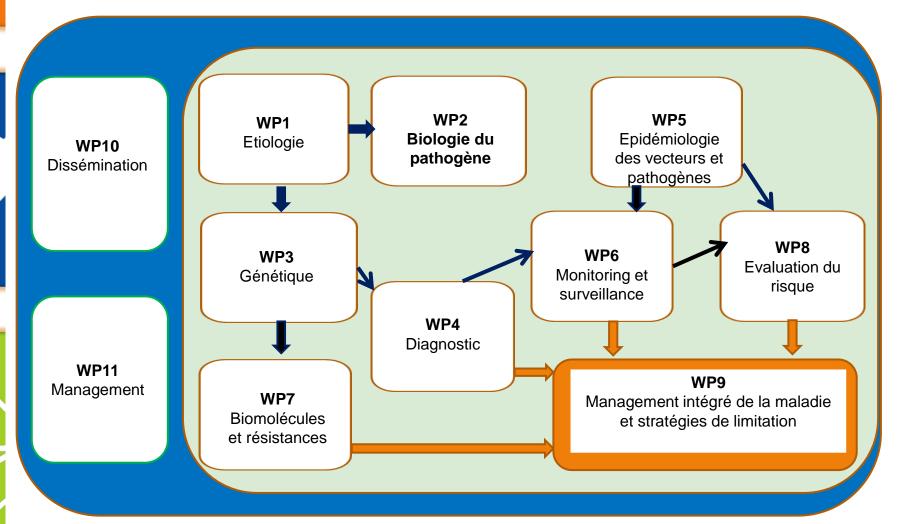
12/06/2016 - 13:59

GRANDES CULTIVOS.COM | Situación actual de Xylella fastidiosa...

16/06/2016 - 09:33

http://www.ponteproject.eu/press-review/nature-com-gridlock-italys-olive-tree-deaths-starts-ease/ the knowledge available on vectors

POnTE et Xylella fastidiosa



Plan de travail du projet

Alm d

dist in

Anses: projet POnTE Collection de souches, pathogénicité Identification des sur Citrus - Caféier - Pervenche, vecteurs effectifs et Luzerne et plantes ornementales, proposition de étude de la colonisation des plantes méthodes hôtes d'échantillonnage Ateliers pour améliorer la capacité des partenaires à la détection précoce WP2 d'émergence de Xylella WP5 - Vectors WP1 fastidiosa and disease Pathogen Aetiology epidemioogy **WP10** Biology Dissemination Génétique de Xylella WP8 WP6 Monitoring WP3 Plant risk and Assessment Genetics Validation d'anticorps surveillance pour l'IF, technique d'extraction d'ADN par WP4 automate sur plantes et WP11 Diagnostics WP7 WP9 insectes, validation de Management PCR pour identification Integrated disease management and Biomolecule s mitigation strategies des souches (RT PCR, and resistance HRM)

Avancées et perspectives des travaux au LSV Partie des travaux réalisés en collaboration avec l'INRA - Emersys

Les avancées: résultat d'une anticipation

- Depuis 2002: tests pour la station de quarantaine (IF – ELISA) sur Vitis sp., Citrus sp., Prunus sp.
- 2010: formation lors du workshop Bari (Italie)
- 2011- 2012: analyse de risque phytosanitaire (Saisine N° 2012-SA-0121) - production d'antisérum pour IF
- 2012; 2014; 2015: premières détections de X. fastidiosa sur caféiers interceptés et isolement de souches

Les avancées: résultat d'une anticipation

PONTE Pestorganisms
Threatening Europe

- Depuis 2002: tests pour la station de quarantaine (IF – ELISA) sur Vitis sp., Citrus sp., Prunus sp.
- 2010: formation lors du workshop Bari (Italie)
- 2011- 2012: analyse de risque phytosanitaire (Saisine N° 2012-SA-0121) - production d'antisérum pour IF
- 2012; 2014; 2015: premières détections de X. fastidiosa sur caféiers interceptés et isolement de souches
- 2012-2014: travaux méthodologiques intralaboratoire d'évaluation de méthodes moléculaires
- 2014: test inter-laboratoires de validation de méthode de détection (6 laboratoires; Italie, Pays-Bas, Nouvelle-Zélande, Royaume-Uni, France)

Chloroses et brûlures foliaires sur caféier

Automate permettant l'extraction semiautomatisée de l'ADN

Les avancées: résultat d'une anticipation

Critères de performance (%)	Extraction ADN: QuickPick™ + KingFisher™ mL Amplification par PCR (Harper <i>et al.</i> , 2010- Erratum 2013)				
	Sur souches				
Inclusivité	100% (19 + 24 souches cibles testées pour les 4sous-espèces)				
Exclusivité	100% (29 souches non-cibles testées)				
Matrice	Oranger	Vigne	Olivier		
Sensibilité	100%*	94%*	67%*		
Specificité	100% 100%		100%		
Repétabilité	100%	96%	100%		
Reproductibilité	98%				
Limite de détection (avec une probabilité de detection de 100%)	≈ 10² bact./mL	≈ 10³ bact./mL	≈ 10 ⁵ bact./mL (Présence d'inhibiteurs)		

Validation et publication d'une méthode officielle

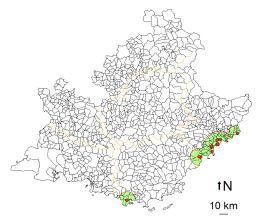
Détection de Xylella fastidiosa par PCR Taqman en temps réel sur plantes hôtes: MA039 version1 (www.anses.fr)

Transfert à un réseau de 5 laboratoires agréés

Les avancées: résultat d'une émergence

- 2015: première détection de X. fastidiosa en Corse (juillet), puis en PACA (octobre) sur polygale à feuille de myrte (Polygala myrtifolia)
- 2015: Publication de la méthode officielle de détection de X. fastidiosa sur plante hôtes par PCR en temps réel
- Septembre octobre 2015: Formation et contrôle de capacité par le LSV de laboratoires; publication de la MA039 et agrément de 5 laboratoires agréés par le Ministère en charge de l'agriculture
- **2016**: Optimisation, évaluation and validation de la méthode de détection de *X. fastidiosa* sur insecte.
- Janvier-Février 2016: participation à la rédaction du protocole OEPP pour le diagnostic de X. fastidiosa

Situation en France 09/2016

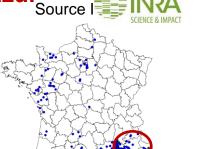

Localisation de tous les végétaux prélevés Données entre le 21/07/2015 et le 06/09/2016

PACA: Provence, Alpes, Côte d'azur

14 foyers

Zones tampons de 10 km autour des zones infectées par Xylella fastidiosa

Données entre le 21/07/2015 et le 06/09/2016

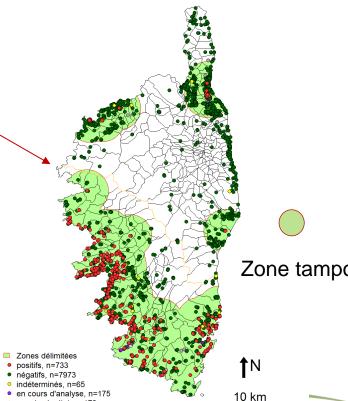

Zones délimitées

Diagnostic

en santé végétale

Détecté à partir de

- Polygala myrtifolia et P. sp
- Spartium junceum
- Lavandula angustifolia


Caféiers interceptés: 21/147
Taux de contamination: 14,3%

Corse

282 foyers

Zones délimitées et localisation de tous les végétaux prélevés

Données entre le 21/07/2015 et le 06/09/2016

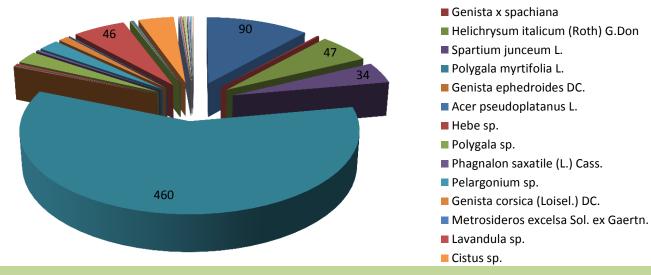
Détecté sur 28 espèces végétales

o pas de résultat, n=172

Espèces hôtes contaminées par X. fastidiosa (06/09/16)

Б				
10 C	osn offic	2000	of the second	

	Echantillons	Nbre	Nbre	Nbre	%
Espèces hôtes	analysés	Positif	Négatif	Indéterminés	de positifs
Calicotome villosa (Poiret) Link	273	90	164	8	33,0
Genista x spachiana	8	2	6	0	25,0
Helichrysum italicum (Roth)	206	47	146	2	22,8
Spartium junceum L.	158	34	115	0	21,5
Polygala myrtifolia L.	2202	460	1674	13	20,9
Genista ephedroides DC.	5	1	4	0	20,0
Acer pseudoplatanus L.	6	1	4	0	16,7
Hebe sp.	21	3	18	0	14,3
Polygala sp.	155	20	124	9	12,9
Phagnalon saxatile (L.) Cass.	24	3	21	0	12,5
Pelargonium graveolens	158	18	133	4	11,4
Genista corsica (Loisel.) DC.	80	9	70	1	11,3
Metrosideros excelsa.	11	1	8	0	9,1
Lavandula sp.	607	46	537	3	7,6
Artemisia arborescens (Vaill.) L.	14	1	12	0	7,1
Cistus sp.	27	466	412	4	5,8
Rosa x floribunda	19	1	17	0	5,3
Prunus cerasifera Ehrh.	20	1	19	0	5,0
Coronilla valentina L.	25	1	24	0	4,0
Cytisus sp.	208	4	193	1	2,0
Asparagus acutifolius L.	125	2	119	1	1,6
Myrtus communis L.	301	3	287	2	1,0
Quercus suber L.	270	2	262	3	0,7
Rosmarinus officinalis L.	663	2	645	0	0,3
Quercus ilex L.	449	1	428	4	0,2
TOTAL	6474	780	5442	56	12,0



Espèces contaminées par *X. fastidiosa* (06/09/16)

■ Calicotome villosa (Poiret) Link

Nombre d'échantillons positifs sur espèces hôtes

- Sur 12076 échantillons analysés (1/3 symptomatiques, 1/3 asymptomatiques, 1/3 sans information)
- 12 % des plantes hôtes révélées contaminées (60% Polygala myrtifolia)
- 6,5% du total des plantes prélevées révélées contaminées
- Plus de 50% échantillons positifs identifiés subsp. multiplex (autres=indéterminés ou en cours d'investigation)

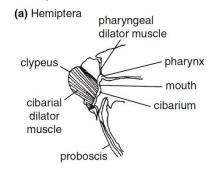
Espèces non trouvées infectées jusqu'à présent en France

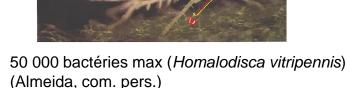
	Nombre échantillons
Olea europaea	1359
Oleander spp.	636
Citrus sp.	417
Vitis spp.	155

Diagnostic

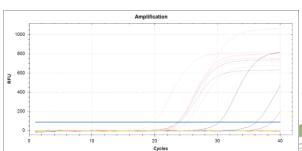
en santé végétale

Adaptation de la méthode MA039 aux insectes (Philaneus spumarius)


Xylella fastidiosa: bactérie du cibarium / pré-cibarium


Analyse réalisée sur tête après ablation des yeux

Broyage au broyeur à billes



Kit QuickPick™ Plant DNA (Bio-Nobile) Automate KingFisher™ mL

PCR en temps réel Harper et al., 2010, Erratum 2013

Adaptation de la méthode MA039 aux insectes (Philaneus spumarius)

Critères de performance	Amplification Harper et al., 2010 (Erratum 2013)		
6 concentrations X 3 extractions X 2 PCR X 3 jours, soit 108 PCR par méthode	Sur broyats de <i>Philaenus spumarius</i> (conc. bact. 0 à 10 ⁵ bact./tête)		
Extraction ADN	QuickPick™ + KingFisher™	Blood and Tissue KIT	
(après spiking X. f. subsp. fastidiosa)	mL	(Qiagen)	
Sensibilité sur gamme	60% (indéterminés non inclus)	40% (indéterminés non inclus)	
Limite de détection (avec probabilité de détection de100%)	≈ 10³ bact./tête	≈ 10⁴ bact./tête	
Répétabilité	91%	87%	

Autres paramètres testés sans effet: dilutions, autres kits

Analyses sur insectes récoltés en 2015 en Corse

Lieu	Philaenus spumarius détectés			
	testés	positifs	Indéterminés	négatifs
Maquis 1	31	2	2	27
Maquis 2	40	6	1	33
Maquis 3	28	2	0	26
Pépinière	14	0	1	13
Jardin 1	18	1	2	15
Jardin 2	4	1	0	3
Espaces verts 1	21	3	1	17
Espaces verts 2	40	2	3	35
Total	196	17 (8,7%)	10 (5,1%)	169 (86,2%)

Autres insectes testés négatifs: 6 Lepyronia coleoptrata, 31 Cicadellidae viridis

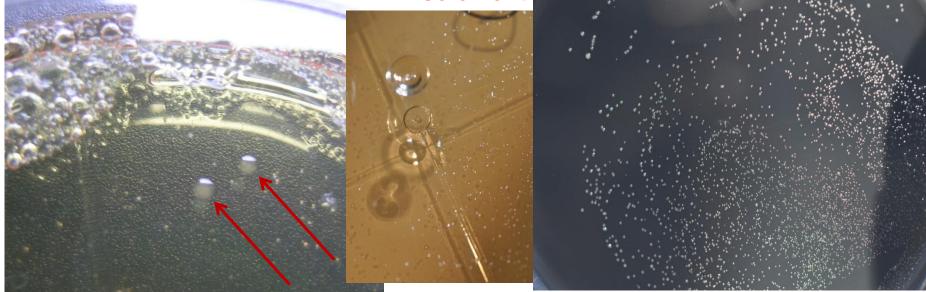
Analyses sur Philaenus spumarius (origine : les Pouilles – Italie 2016)

- X. fastidiosa détecté par la méthode de référence MA039 (Harper et al., 2010)
- Taux de contamination estimé ≈ 10% selon Maria Saponari (CNR)

P. spumarius R16942	Ct 1	Ct 2	Resultats
1	Ø	37,87	Ind.
2	Ø	38,69	Ind
3	38,38	38,72	Ind
4	Ø	Ø	Neg.
5	39,7	Ø	≈ Neg
6	38,86	Ø	Ind
7	38,7	38,83	Ind
8	Ø	Ø	Neg.
9	Ø	38,51	Ind
10	Ø	Ø	Neg.
11	Ø	38,59	Ind
12	39,22	38,78	Ind
13	Ø	Ø	Neg.
14	31,59	31,51	Pos.
15	Ø	Ø	Neg.
16	Ø	39,69	≈ Neg
17	Ø	Ø	Neg.
18	38,13	Ø	Ind
19	Ø	Ø	Neg.
20	38,5	Ø	Ind
21	38,45	Ø	Ind
22	Ø	38,86	Ind
23	Ø	Ø	Neg.
24	Ø	Ø	Neg.
25	Ø	Ø	Neg.

P. spumarius R16942	Ct 1	Ct 2	Resultats
26	38,6	Ø	Ind
27	38,8	Ø	Ind
28	39,56	Ø	≈ Neg
29	38,72	Ø	Ind
30	38,08	Ø	Ind
31	38,01	37,44	Ind
32	ø	37,79	Ind
33	37,25	38,71	Ind
34	ø	39,63	U≈ Neg
35	38,88	37,14	Ind
36	37,27	39,54	Ind
37	38,63	38,66	Ind
38	29,14	29,22	Pos.
39	37,19	38,7	Ind
40	38,74	Ø	Ind
41	32,74	32,64	Pos.
42	38,64	Ø	Ind
43	35,89	35,19	Ind
44	38,15	38,31	Ind
45	37,83	Ø	Ind
46	Ø _	Ø _	Neg.
47	36,89	Ø	Ind
48	Ø	38,17	Ind
49	Ø	Ø	Neg.
50	38,16	38,19	Ind

la Santé Végétale



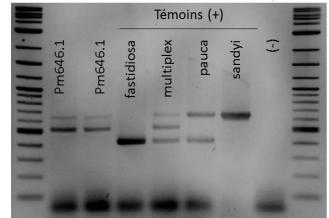
Sur milieu PWG modifié après 20 jours (*Coffea arabica*)

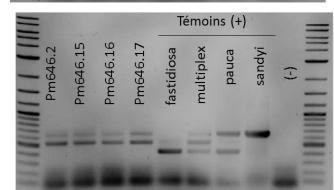
Isolement

Sur milieu BCYE après 10 jours (*Coffea arabica*)

Source: Anses LSV

Diamètre des colonies environ 2 mm





PCR multiplex

(Hernandez-Martinez et al, 2010)

MLSA/MLST

Séquences partielles de 7 gènes de ménage: http://pubmlst.org/xfastidiosa/

cysG, gltT, holC, leuA, malF, nuoL, petC

Analyses des séquences pour MLSA/MLST réalisées par l' INRA – Emersys.

19 isolats de Corse (les 2 profils *multiplex*, diversité de plantes hôtes)

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		,
Ref.	Subsp.	Plante hôte	Année
LSV4677	multiplex ST7	Polygala myrtifolia	2015
LSV4678	multiplex ST6	Spartium junceum	2015
LSV4679	multiplex ST6	Spartium junceum	2015
LSV4706	multiplex ST7	Polygala myrtifolia	2015
LSV4707	multiplex ST6	Polygala myrtifolia	2015
LSV4708	multiplex ST7	Polygala myrtifolia	2015
LSV4710	multiplex ST6	Lavandula sp.	2015
LSV4713	multiplex ST6	Prunus cerasifera	2015
LSV4714	multiplex ST6	Lavandula angustifolia	2015
LSV4716	multiplex ST7	Polygala myrtifolia	2015
LSV4717	multiplex ST6	Polygala myrtifolia	2015
LSV4718	multiplex ST7	Polygala myrtifolia	2015
LSV4719	multiplex ST7	Polygala myrtifolia	2015
LSV4720	multiplex ST7	Cistus monspeliensis	2015
LSV4721	multiplex ST7	Pelargonium sp.	2015
LSV4722	multiplex ST7	Polygala myrtifolia	2015
LSV4723	multiplex ST6	Coronilla valentina	2015
LSV 47.60	multiplex ST6	Helichrysum italicum	2016
LSV 47.61	multiplex ST6	Calicotome villosa	2016

Caractères gras: génome complet séquencé - Analyses génome et MLSA/MLST par INRA - Emersys)

Ref.

LSV 47.33

Les avancées : identification des souches de Xylella fastidiosa

4 isolats de région PACA

Ref.	Subsp.	Plante hôte	Année
LSV4711	multiplex ST6	Polygala myrtifolia	2015
LSV4712	multiplex ST6	Polygala myrtifolia	2015
LSV4715	multiplex ST7	Polygala myrtifolia	2015
LSV 47.32	multiplex ST7	Spartium junceum	2016

8 isolats sur caféiers interceptés

pauca ST53

Ci	1		Υ	1			

2016

Plante hôte

Caractères gras: génome séquencé en collaboration avec l'INRA – Emersys. MLSA/MLST réalisées par l'INRA - Emersys.

Coffea arabica

Jacques et al., New variants of coffee-infecting Xylella fastidiosa issued from homologous recombination, Appl. Environ. Microbiol., December 2015.

Milieu PWGm

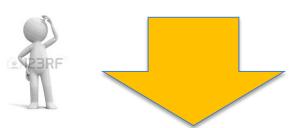
Difficultés d'isolement de souches pures

Caractérisation et identification de la sous-espèce directement dans extrait végétal

Nestle Research 1

M12 (Prunus dulcis)

Griffin-1 (Quercus rubra)


	ST	cysG	gltT	holC	leuA	malF	nuoL	petC
Α	7	7	3	3	3	3	3	3
В	6	3	3	3	3	3	3	3

Dixon

Application directe sur végétal après extraction d'ADN

Date	Pays	Echantillon	cysG	gltT	holC	leuA	malF	nuoL	petC	ST	subsp
		N°	7	3	3	3	3	3	3	7	multiplex
			ind	3	3	ind	3	3	Ind	ind	Indéterminé

Test de pouvoir pathogène (LSV)

Plants inoculés:

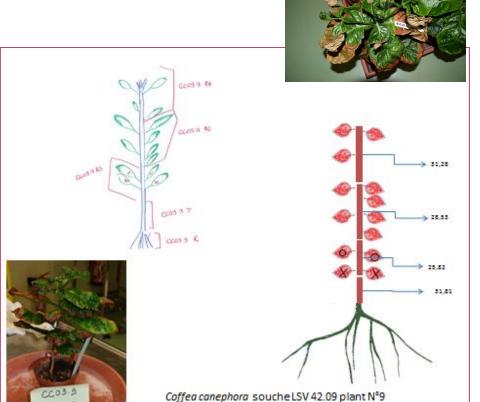
- Coffea arabica (Projet Sap Alien)
- Coffea canephora (Projet Sap Alien)
- Citrus sinensis (POSEIDOM)

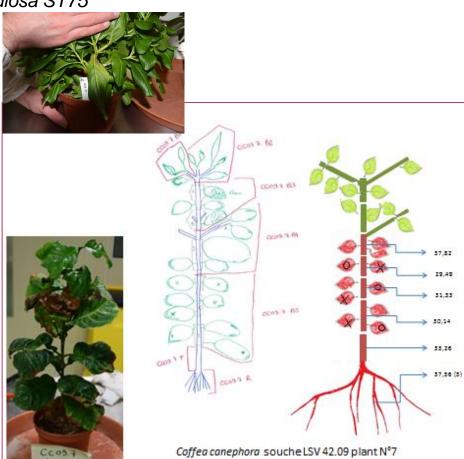
Souches utilisées pour l'inoculation:

- X. fastidiosa subsp. pauca (LSV4103 origine Equateur C.arabica)
- X. fastidiosa subsp. fastidiosa/sandyi (LSV4209 origine Mexique C. canephora)

Résultats:

- Souches non pathogènes sur Citrus sinensis
- Symptômes légers sur *Coffea mais* développement et diffusion de la bactérie dans les vaisseaux de la plante (des racines à la tige supérieure) avec une distribution hétérogène (dans la plante et aux niveau des organes)
- Mise en évidence du pouvoir pathogène de la souche X. fastidiosa subsp. fastidiosa/sandyi (LSV4209) sur C. canephora.





Test de pouvoir pathogène

Plantes inoculées avec la souche Xylella fastidiosa CFBP 8073 proche de la sous-espece fastidiosa ST75

Perspectives de travaux de recherche

Evaluation du pouvoir

pathogène:

SapAlien

Optimisation de l'identification des sous-espèces de Xylella directement sur plante ou insectes: Interne?

Optimisation et validation de la méthode de détection sur plantes et insectes; levées d'inhibition:
Euphresco et PONTE

Pré-étude sur la contamination / transmission par la semence, échantillons composites: Interne?

Adaptation de nouvelles technologies type NGS à la détection de Xylella fastidiosa sur plante et insectes: CASDAR?

Remerciements

Projet Sap Alien

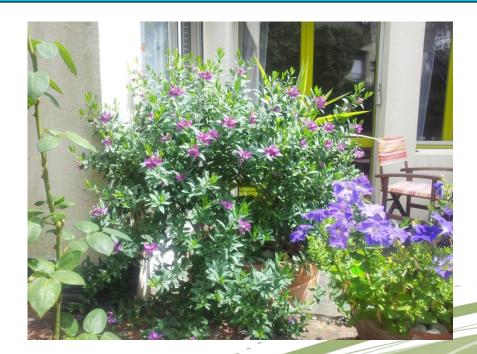
Projet POSEIDOM

Dominique Crouzillat Stelly Mississipi **Emmanuelle** Morel

Marie-Agnès Jacques Nicolas Denancé Martial Briand Sophie Cesbron Perrine Portier

Sandrine Paillard Christèle Dousset Corinne Audusseau Christelle Françoise Sylvie Beaumont Dimitri Molusson **Antoine Sainte-Luce** Virginie Juteau Carène Rivoal **Amandine Cunty**

Yannick Blanchard Claire de Boisséson **Fabrice Touzaint**


Pauline de Jerphanion

Merci pour votre attention

